Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease.
نویسندگان
چکیده
Cystic fibrosis (CF) intestinal disease is associated with the pathological manifestation mucoviscidosis, which is the secretion of tenacious, viscid mucus that plugs ducts and glands of epithelial-lined organs. Goblet cells are the principal cell type involved in exocytosis of mucin granules; however, little is known about the exocytotic process of goblet cells in the CF intestine. Using intestinal organoids from a CF mouse model, we determined that CF goblet cells have altered exocytotic dynamics, which involved intrathecal granule swelling that was abruptly followed by incomplete release of partially decondensated mucus. Some CF goblet cells exhibited an ectopic granule location and distorted cellular morphology, a phenotype that is consistent with retrograde intracellular granule movement during exocytosis. Increasing the luminal concentration of bicarbonate, which mimics CF transmembrane conductance regulator-mediated anion secretion, increased spontaneous degranulation in WT goblet cells and improved exocytotic dynamics in CF goblet cells; however, there was still an apparent incoordination between granule decondensation and exocytosis in the CF goblet cells. Compared with those within WT goblet cells, mucin granules within CF goblet cells had an alkaline pH, which may adversely affect the polyionic composition of the mucins. Together, these findings indicate that goblet cell dysfunction is an epithelial-autonomous defect in the CF intestine that likely contributes to the pathology of mucoviscidosis and the intestinal manifestations of obstruction and inflammation.
منابع مشابه
Cystic fibrosis from genotype to phenotype: review article
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease, which is caused by defection in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CFTR gene codes chloride channels to modulate the homeostasis of epithelial environments. Defective CFTR affects various organs such as the lungs, pancreas, intestine, liver and skin; however, lung impairment is the mai...
متن کاملMurine mCLCA6 is an integral apical membrane protein of non-goblet cell enterocytes and co-localizes with the cystic fibrosis transmembrane conductance regulator.
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pa...
متن کاملCharacteristics of rodent intestinal mucin Muc3 and alterations in a mouse model of human cystic fibrosis.
Human mucin MUC3 and rodent Muc3 are widely assumed to represent secretory mucins expressed in columnar and goblet cells of the intestine. Using a 3'-oligonucleotide probe and in situ hybridization, we observed expression of rat Muc3 mostly in columnar cells. Two antibodies specific for COOH-terminal epitopes of Muc3 localized to apical membranes and cytoplasm of columnar cells. An antibody to ...
متن کاملThe severe G480C cystic fibrosis mutation, when replicated in the mouse, demonstrates mistrafficking, normal survival and organ-specific bioelectrics.
The majority of cystic fibrosis patients produce a mutant form of CFTR (DeltaF508) which has been shown to be mislocalized in both humans and mice. G480C, another clinically 'severe' mutation, has also been demonstrated to be defective in its intracellular processing, but when allowed to traffic in Xenopus oocytes showed similar channel characteristics to that of wild-type CFTR. We have replica...
متن کاملA Review of The Role of The Microbiome on Immune Responses and Its Association With Cystic Fibrosis
In recent years, the microbiome has been recognized as a key regulator of immune responses. Evidence suggests that changes in the microbiome can lead to chronic disease and even exacerbation of the disease. Impairment of innate immunity resulting from microbial incompatibility may worsen host susceptibility to infection and exacerbate chronic lung diseases. Specific microbes play a key role in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 125 3 شماره
صفحات -
تاریخ انتشار 2015